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1 Fundamental Solutions to the Wave Equation

1.1 Lorentz invariance of fundamental solution

Last time, we were solving the wave equation
where

� = ∂2t −∆x

= mα,β∂α∂β

in coordinates t = x0 and ∂t = ∂0. The matrix M is given by

M =


−1

1
. . .

1

 .
Last time, we determined that a fundamental solution is homogeneous of order 1 − n

and must move forward in time. We looked at a symmetries of the equation when we make
a linear change of coordinates x = Ay. We saw that such a linear change of coordinates
leaves � unchanged if and only if

A>MA = M.

This is a group, called the Lorentz1 group; if M were the identity matrix, this would be
the group or orthogonal matrices. What are the generators for this group?

1. Rigid rotations: A =

[
1 0
0 O

]
, where O is an n × n orthogonal matrix. These were

the symmetries corresponding to the Laplacian.

1This is not to be confused with Lorenz, another mathematician who also had a hand in some things we
will be discussing today. To make matters worse, they even wrote a paper together!
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2. Look at 1+1 dimensions and leave the rest unchanged: Since we can apply rotations
to the last n dimensions, we only need to mix the time dimension and the first space
dimension. Observe that[

a c
b d

] [
−1 0
0 1

] [
a b
c d

]
=

[
−1 0
0 1

]
.

If −1 were 1, we would get rotations:

A =

[
cos θ sin θ
− sin θ cos θ

]
= rotation by angle θ.

This keeps t2 +x2 unchanged; this is like rotating around a point in a circle by angle
θ.

With the −1, we get

A =

[
coshϕ sinhϕ
sinhϕ coshϕ

]
= hyperbolic rotation by angle ϕ.

Such matrices keep t2−x2 unchanged. Rather than circles, here’s what the level sets
look like:
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Here, we dilate the t = x direction and shrink the t = −x direction. This suggests
that we make a change of variables u = t + x and v = −x. Then ∂2t − ∂2x = 4∂u∂v.
Then the transformation u 7→ λu, v 7→ λ−1v preserves the operator in this null
frame.

Theorem 1.1. The Lorentz group is generated by rigid spatial rotations and 1-d hyperbolic
rotations.2

We say that the solution to the wave equation is Lorentz invariant.

1.2 Calculation of fundamental solutions

We now know that the fundamental solution of the wave equation should be a “function”
of t2 − x2. Here is what the picture should look like in higher dimensions.

The level sets should be forward and backward cones and hyperboloids. We get 1-sheeted
and 2-sheeted hyperboloids. On the 1-sheeted hyperboloids, the forward in time points are
connected to the backwards in time points, which must give 0 for our forward time solution.
So these must be 0. Thus, K = K(t2 − x2) = K(y) must be supported in the forward
cone {t2 − x2 ≥ 0}.3 We want a homogeneous distribution of y which is 1−n

2 homogeneous
(since we are now working with the squares of t, x) and supported in y ≥ 0.

• In 1 dimension, we want a homogeneous distribution of order 0, supported where
y > 0. So K(y) = cH(y), and we saw earlier that this constant is c = 1/2.

2Hyperbolic rotations are sometimes referred to as Lorentz boosts. These hyperbolic rotations are what
happens in special relativity when you switch between observers in different reference frames.

3A backward time solution would still be 0 on the sides. It would just be supported on the backward
cone.
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• In 2-dimensions, we want a homogeneous distribution of order −1/2, supported where
y > 0. So we get

K(y) =

{
c2

1√
y y > 0

0 y ≤ 0.

So we get

K(t, x) = c2
1√

(t2 − x2)+
1t≥0.

• In 3-dimensions, we cannot get a function which is homogeneous of order −1. The
two distributions that span the space of homogeneous distributions of order −1 are
δ0 and PV 1

y . The latter is supported everywhere, so we take K(y) = δy=0.

K(t, x) = c3δt2−x2=01t≥0.

• In 4 dimensions, we need homogeneity of order −3/2. However, 1

y
3/2
+

/∈ L1
loc. Define

1

y
3/2
+

:= −2∂y
1

y
1/2
+

.

This is a distribution, not a function. We can repeat this differentiation procedure
to get a solution for all even dimensions.

• In 5 dimensions, we can get a solution which is homogeneous of order 2 by differen-
tiating δy=0. We can keep differentiating to get solutions in all odd odd dimensions.

1.3 Determination of constants for fundamental solutions

Here is a formal computation: If �u = f , let’s see how
∫
u dx behaves as a function of

time.
d

dt

∫
u dx =

∫
ut dx.

d2

dt2

∫
u dx =

∫
utt dx =

∫
∇u+ f dx =

∫
f dx,

since we can get rid of the Laplacian using integration by parts. If f = δ0 and u = K, then
u = 0 for t < 0, so

I(t) =

∫
u dx = 0 for all t < 0.

Additionally, we get
I ′′(t) = δt=0.

This tells us that
I(t) = t1t≥0,
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so ∫
K(t, x) dx = t.

• In 2 dimensions, we have

K(t, x) =
c2√

(t2 − x2)+
,

so the equation

t = c2

∫
1√

(t2 − x2)+
dx

holds for all t. if we set t = 1, then we get

1 = c2

∫
B(0,1)

1√
1− r2

r dr dθ = c22π
[
−
√

1− r2
]1
0
,

which tells us that

c2 =
1

2π
.

• In 3 dimensions, we want to find c3. What is δt2−x2?

δ0 =
1

2πi

(
1

y − i0
− 1

y + i0

)
,

so we can write

δt2−x2 =
1

2πi

(
1

t2 − x2 + i0
− 1

t2 − x2 − i0

)
.

Note that
t2 − x2

=

1

t− |x|
1

t+ |x|
,

where the left term vanishes on the cone, and t + |x| is 2t on the cone. so we can
write

δt2−x2=0 = δt=|x|︸ ︷︷ ︸
surface measure on |x| = t

· 1
2t
.

If we have a surface Σ = {φ = 0}, this is like normalizing to make |∇φ| = 1.

The computation becomes

K(t, x) = c3
1

t
δ|x|=t.

t =

∫
c3
t
δ|x|=t dx =

c3
t

Area({|x| = t})︸ ︷︷ ︸
=4πt2

.

so we get

c3 =
1

4π
.
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1.4 Physical interpretation of solutions to the wave equation

Here are two key properties of the wave equation:

1. All forward solutions are supported on the forward cone. This is referred as the finite
speed of propagation. This says that waves move with speed ≤ 1. If we normalize
the equation with physical constants to get c2∂2t −∆x, where c is the speed of light,
then this says that no waves move faster than the speed of light. An observer at
position x only observes the wave at the time at which the cone hits the observer’s
timeline:

2. Consider 3 dimensions, where the fundamental solution K is supported exactly on
the cone. Here, waves hit the observer just once, and we don’t see them again. This
is called the Huygens principle.

Remark 1.1. The equations of physics are nonlinear; this linear PDE is just the best linear
approximation. The finite speed of propagation remains, but Huygen’s principle does not
hold in general. When scientists observed gravitational waves recently, they observed both
a Dirac mass and a nonlinear tail.

1.5 Next steps: Fourier series

Our next goal is to learn about the connection between the Fourier transform and Fourier
series. The Fourier transform û of u : Rn → C is given by

u(x) =

∫
û(ξ)eix·ξ dξ.
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In calculus, you may have encountered Fourier series:

Definition 1.1. If u : [0, 2π]→ C, then the Fourier series for u is given by

u(x) =
∑
n

cne
inx =

∑
n

cn(cos(nx) + i sin(nx)).

Not all PDEs can be solved; we will see more about this next time.
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